Computability of Operators on Continuous and Discrete Time Streams
نویسندگان
چکیده
A stream is a sequence of data indexed by time. The behaviour of natural and artificial systems can be modelled by streams and stream transformations. There are two distinct types of data stream: streams based on continuous time and streams based on discrete time. Having investigated case studies of both kinds separately, we have begun to combine their study in a unified theory of stream transformers, specified by equations. Using only the standard mathematical techniques of topology, we have proved continuity properties of stream transformers. Here, in this sequel, we analyse their computability. We use the theory of computable functions on algebras to design two distinct methods for defining computability on continuous and discrete time streams of data from a complete metric space. One is based upon low-level concrete representations, specifically enumerations, and the other is based upon high-level programming, specifically while programs, over abstract data types. We analyse when these methods are equivalent. We demonstrate the use of the methods by showing the computability of an analog computing system. We discuss the idea that continuity and computability are important for models of physical systems to be “well-posed”.
منابع مشابه
A Class of Contracting Stream Operators † Nick
In (Tucker, J. V. and Zucker, J. I. (2007) Computability of analog networks. Theoret. Comput. Sci., 371, 115–146; Tucker, J. V. and Zucker, J. I. (2011) Continuity of operators on continuous and discrete time streams. Theoret. Comput. Sci., 412, 3378–3403), Tucker and Zucker present a model for the semantics of analog networks operating on streams from topological algebras. Central to their mod...
متن کاملTime-Varying Modeling of Systematic Risk: using High-Frequency Characterization of Tehran Stock Exchange
We decompose time-varying beta for stock into beta for continuous systematic risk and beta for discontinuous systematic risk. Brownian motion is assumed as nature of price movements in our modeling. Our empirical research is based on high-frequency data for stocks from Tehran Stock Exchange. Our market portfolio experiences 136 days out of 243 trading days with jumps which is a considerable rat...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملClosed Sets and Operators thereon: Representations, Computability and Complexity
The TTE approach to Computable Analysis is the study of so-called representations (encodings for continuous objects such as reals, functions, and sets) with respect to the notions of computability they induce. A rich variety of such representations had been devised over the past decades, particularly regarding closed subsets of Euclidean space plus subclasses thereof (like compact subsets). In ...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computability
دوره 3 شماره
صفحات -
تاریخ انتشار 2014